If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x+140=180
We move all terms to the left:
x^2+3x+140-(180)=0
We add all the numbers together, and all the variables
x^2+3x-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| 4x-9=X+16 | | 24=3y= | | (3x−1)2+12x−4=0 | | 3x-(2x-7)=14 | | x+7-3x=-21 | | 3x+5x=7^2-3^2 | | x(9x-4x)=13 | | 4(-9y-29)+6y=4 | | 2=6(6/4x) | | 2=6(6/4x | | 5n+4=2n-22 | | 2=6-6/4x | | r+8.8=-6.4 | | 5x*x+9x+13=13 | | 3x+-2=-14 | | 5x²+9x+13=13 | | x+65+88=180 | | (4x-13)+(x+8)=180 | | 0=48x^2-4x-80 | | x-0.28x=16.2 | | 3p-2/5=7 | | (x+5)+(x+13)=180 | | 11+14=-5(6x-5) | | x-13=x-5 | | 2(3x+9)=-29+35 | | m-3/1.5=m | | 80+0.20x=60+0.30x | | 246=6(1-6r)+6r | | -5(x-31)=-25 | | x+.0825x=4.50 | | -5(x-31)=25 | | 8y-8=9y-7 |